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PREFACE

In all recent U.S. combat aircraft, the armed services have sought

the increased capability inherent in suites of digital avionics. These

avionics generally rely on large and expensive automated test equipment

(ATE) for repair.

In the event of a fast-moving war with high sortie rates, the

removal rates for such avionics are likely to exceed the repair rates

for the ATE, resulting in substantial queues. To assess the ability to

deploy aircraft and "fly a scenario" with high sortie rates, one must be

able to model and quantify the degree of degradation that will result

from such queuing.

The model described in this Note was built at The Rand Corporation

to simulate the queuing for ATE and quantify its importance in the

repair cycle; it was also used to evaluate the accuracy of several

analytic approximations. This research was conducted in the Project AIR

FORCE Resource Management Program under the project "The Driving Inputs

and Assumptions of Stockage/Assessment Models."

This Note should be of special interest to logistics analysts and

resource planners.
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SUMMARY

This Note describes the Dyna-Sim model, which provides a

capability for exploring the implications of maintenance repair queuing

and requirements for spare parts. Using Dyna-Sim, several analytical

approximations to repair queuing processes related to Automated Test

Equipment (ATE) were examined. There are several motivations behind

this analysis:

* Repair of avionics equipment has become quite dependent on ATE,

which is expensive (thus scarce), and prone to failure.

• Capability assessment models dealing with the Air Force's

ability to deploy and fly a scenario with high sortie rates

must be able to quantify the degradation that results from

queuing of avionics awaiting repair on ATE. Almost all such

models now make an "ample server" assumption that ignores both

wartime and peacetime queuing. Such modeling is misleading at

best and potentially dangerous.

* Several analytic approximations to the ATE queuing process

have been considered at Rand for incorporating into

Dyna-METRIC, the Rand-developed Air Force standard capability

assessment model.

* Evaluation of these analytic approximations could best be

accomplished by building a straightforward Monte Carlo discrete-

event simulation model that would explicitly model ATE

queuing, preferably in a fast-moving war with high aircraft

sortie rates that would generate high demands on the ATE.

Several useful conclusions emerge from our study of the ATE

queueing problem using Dyna-Sim, which we summarize as follows:

* The ample server assumption (more than enough ATE available

to serve any repair demands) is a very poor approximation

when queues become saturated in high aircraft sortie rate

scenarios.

. ~ * A~S ,'.
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If repair times follow the exponential distribution, certain

approximation techniques become available (because the queuing

system satisfies requirements of a Markov process). But real-

world repair times are rarely exponential. We used Dyna-Sim

to show that in a constrained server problem, the choice of

the repair time distribution is not important. Thus, analytical

approximations for queuing in capability assessment models

are tractable.
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I. INTRODUCTION

THE PROBLEM

For its most recent combat aircraft, the Air Force and the other

services have used avionics suites that rely on expensive automated test

equipment (ATE) for repair. Several characteristics of this trend

present an added challenge to the logistician concerned with wartime

capability: (1) the individual avionics units are expensive and, in some

important cases, in short supply; (2) they are complex and fault

isolation can be difficult; (3) repair without the ATE is usually

impossible at the base level; and (4) the ATE also is expensive, in

short supply, and subject to failure.

ATE test equipment may operate at near capacity in peacetime, but

in a wartime environment, especially in NATO, avionics repair demands

may cause considerable delays in repairs because of ATE queuing.

Several properties of the test equipment exacerbate the queuing problem.

The equipment is expensive, in short supply, and failure prone; it is

also large, heavy, and requires extensive airlift capacity. In most

scenarios, aircraft are deployed from the United States much more

rapidly than their supporting ATE, thus increasing the load on the

already limited test equipment permanently located in Europe.

Models to estimate delays and numbers of items in repair are needed

to assess capability, allocate resources, and establish policies for

using ATE. In the abstract, the situation is a queuing problem, but it

has complexities that make the problem more difficult than analogous

problems cited in the literature. For example, the intensity of the

surge and its importance preclude steady state approximations. In

addition, the number of servers (stands of ATE) may change in a

deterministic manner as ATE is deployed, and additionally may change at

random as they fail. Perhaps most important, service (repair)

priorities will not be first come first served (FCFS). Instead, actual

service priorities can be expected to favor a rule in which the

component causing the most downed aircraft is served next.
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In many constrained repair situations, it is reasonable to believe

that in wartime the limit on service capacity will be mitigated by the

flexibility of manpower and efficient deviations from standard

procedures. However, in the case of ATE, it is often impossible to

reduce the considerable service time required on the test equipment to

isolate a fault or verify that the unit has been repaired. This

inflexibility makes especially inappropriate and misleading the common

and mathematically convenient "ample server" assumption, which is that

items never wait for repair because of limited numbers of people or

equipment.

We have focused attention on the ATE queuing problem, but

constrained service capability causes many other queuing problems, such

as the effect of limited manpower on repair, constrained depot repair,

flight line turnaround time constrained by POL facilities. The ATE

queuing problem has been singled out because of its importance and the

relative inflexibility of the ATE itself.

The ample server assumption has pervaded both previous and current

generations of Air Force logistics capability assessment models. In

particular, this assumption is used in early versions of the Dyna-METRIC

model' and similar AF models (such as WARS) now under development. The

invalidity of the ample server assumption in these models motivated the

development of Dyna-Sim and the companion analytic models as research

tools to provide alternative approaches to that assumption. Current

versions of the Dyna-METRIC models at Rand now incorporate a version of

the analytic model.

MATHEMATICAL QUEUING MODELS AND THEIR ASSUMPTIONS
Where arrival intensities are zero and then jump up to a constant

level, and we can make the infinite or ample server assumption, the

closed form solution for the number of parts in the system is well

known.2 Although these assumptions are unduly restrictive, the closed

1R. J. Hillestad and M. J. Carrillo, "Models and Techniques for
Recoverable Item Stockage When Demands and the Repair Process are
Nonstationary--Part I: Performance Measurement," The Rand Corporation,
N-1482-AF, November 1980.

2L. Takacs, Introduction to the Theory of Queues, Oxford University
Press, New York, 1962.
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form solution provides a valuable benchmark to check the accuracy of

more complex models.

If we can make the assumption that repair times are exponential

random variables, then the performance of the queue can be approximated

by a process where the number of line replaceable units (LRUs) in repair

is a Markov process. This is important because the probability

distributions associated with a Markov process can be expressed as the

solution to a certain set of differential equations. These Kolmogoroff

equations are well suited to numerical solution on a computer. A

computer program for the solution of these equations has been developed

and used at Rand.

Dyna-Sim is a Monte Carlo simulation of a multi-server, multi-

job-class queuing system that allows variation of the arrival rates for

the classes of jobs be varied over time. It is able to vary arrival

rates, making it different from other queuing system simulations. Jobs

are selected from the queue according to a priority rule chosen by the

user. Four alternative priority rules have been implemented; others

should not be difficult to add. Jobs arrive according to a time-varying

Poisson or compound Poisson process, and the user may choose either

exponentially distributed or constant service times. Other service time

distributions could be easily included.

Although analytic models are generally preferred over simulations,

it does not take much in the way of complexity to frustrate attempts at

constructing analytic models. In fact, the original motivation for

constructing the Dyna-Sim model was to provide a way to test the

adequacy of analytic models based on solving differential equations.

This investigation of queuing models, both analytic and the simulation

approach described here, was motivated by the need to model the effects

of delays in the repair of components induced by the constrained

capacity of ATE, which is a limited resource that must be shared among

several types of items.

When the sum of the arrival rates exceeds the sum of the service

rates we say the queuing system is saturated. In this case the queue is

highly variable, and achieving a given degree of accuracy with any such

Monte Carlo model may require many trial runs.
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The ATE queuing problem can be characterized by:

1. A collection of different incoming part classes requiring

service, LRU(i), i = 1,2,...,N,

2. Each having a mean service time T(i),

3. A time-varying arrival intensity H(i,t),

4. An initial level of serviceable stock S(i),

5. A fixed number of servers NS.

Let N(i,t) be the random number of units of LRU(i) in the queue and in

repair at time t.

Throughout we assume that parts fail and arrive at the model's

single queue according to a Poisson arrival process with a nonstationary

arrival intensity.3

Several real world service priority schemes are suggested by the

nature of the queuing problem. We have included four options in

Dyna-Sim. Rule I invokes FCFS service priority. Rule 2 assigns

priority to the class of jobs with the most in the queue. Rule 3

assumes that job classes have been prioritized in advance and service is

given on a FCFS basis within the job class in the queue having the

highest priority. In Rule 4 we compute the back order quantity BOQ(i) =

N(i,t) - S(i), and service is given to the job class with the highest

back order quantity.

OVERVIEW

The remainder of the Note describes the Dyna-Sim model and presents

some results obtained with it. Section II discusses the structure of

the model including discrete event simulation time management, sampling

interarrival times, job service selection priority rules, and random

number sampling. Section III presents some results obtained with the

model. Appendix A describes each of the Dyna-Sim model input

requirements, organized into seven input sets, followed by examples of

outputs produced by the model. Appendix B discusses the Simscript II

program, its variables, subprograms, and event control.

3 For a detailed discussion of Poisson and compound Poisson arrival
processes see G. B. Crawford, Palm's Theorem for Nonstationary
Processes, The Rand Corporation, R-2750-RC, October 1981.
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It presents some guidelines for adding service priority rules and

a listing of the Simscript II code.
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II. THE DYNA-SIM SIMULATION MODEL

Dyna-Sim is a Monte Carlo discrete event simulation of a multi-

server, multi-job-class queuing system with time-varying arrival rates

for each job class. Built into the model are the four job service

selection rules mentioned earlier; others can be added with minimal

difficulty. In this section, we first present an overview of the

management of simulated time and then discuss its relation to

statistical data collection. Four additional topics receive detailed

attention: sampling interarrival times, modeling arrival processes when

the variance exceeds the mean, job service selection priority rules, and

the handling of random number streams.

SIMULATION TIME MANAGEMENT

Most queuing simulations are done with the intention of studying

the steady-state behavior of a system with time-invariant parameters.

The essence of Dyna-Sim, however, is to study behavior over a finite

time period during which arrival rates vary as specified by the user.

Thus, managing simulated time is somewhat complicated by two things.

The first is the arrangement for varying arrival rates, and the second

is the need to run several trials to obtain statistically reliable

results. Dyna-Sim deals with four kinds of time intervals: trial, run-

in, period, and sample.

A trial is a time 4nterval during which we desire to study the

system's behavior. To get meaningful results, the analyst would want

statistics computed from several trials. One run of the model will

provide data from an arbitrary number of trials to be specified by the

user. Before each trial, the system is allowed to run for an interval

called a run-in, during which arrival rates are held constant. The

purposes of the run-in intervals are (1) to allow remaining jobs from

the preceding trial to clear out of the system so that flow time (time

in system) statistics can be collected on all the jobs that arrived

during the preceding trial, and (2) to let the transients from the

preceding trial die out, allowing the system to reach a desired start-
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of-trial condition. Because of the dual purpose of run-ins, a

simulation run begins with a run-in, alternates between trials and run-

ins, and finishes with a final run-in. The final run-in is to capture

flow time statistics on jobs remaining in the system at the end of the

last trial.

In our use, we frequently wanted to have trials start with very few

jobs in the system. This can be achieved by setting the arrival rate

during run-in intervals to a very low value (e.g., 10- ) and making the

run-in period fairly long. With low arrival rates, even long run-in ,

intervals take little computer time because of the nature of the "next

imminent event" timing mechanism. The program also allows the user to

specify an optional "initial run-in" interval that takes place before

the first standard run-in to give an extra amount of time for

stabilization at the start.

An individual trial is broken up into smaller intervals, called
"periods," to represent the time varying arrival rates. A period is a

time interval over which the arrival rate parameters are held constant

for all job classes. The model treats the number of periods to be one

more than the number of intervals during a trial. The extra period is

associated with the end of a trial, and the arrival rates specified for

the extra period are for use during run-ins. Input data permit

definition of the number of periods (including the extra one), the time

relative to the start of a trial that each period begins, and the

arrival rates by job class and period.

For example, suppose the trials are to last 80 days with four

arrival rates in a trial. Then the number of periods is five. We must

specify five times for the periods (when they start relative to the

beginning of a trial). The first must occur at time 0 and the last must

occur at time 80. The time of the last period also informs the model of

the total length of a trial.

One other type of time interval is involved. The model collects

primary data on the number of jobs in the system by job class and

overall. We obtain these statistics by observing the state of the

system at the beginning of each trial and thereafter at evenly spaced

intervals within trials. These are called "sample intervals." The

model performs no sampling during run-ins. Observing the number of jobs

IJ



in the system at the beginning of trials can be useful in judging the

adequacy of the run-in interval length. Figure 1 illustrates the time

interval relationships discussed above.

The method of sampling arrival times is based on a correspondence

between a time-varying Poisson process and a stationary Poisson process

with intensity equal to 1. The correspondence is as follows: Let m(t)

be the intensity of the nonhomogeneous process and L(t) be the mean

value function, which is equal to the integral

J m(x)dx

If arrivals in the nonhomogeneous process occur at times to, t 1 , t 2 ,

the numbers L(t0 ), L(tl), L(t2 ),... correspond to the arrival

times in a stationary Poisson process. Thus the random variables

(L(tn ) - L(tn.)), n = 1,2..., correspond to the interarrival

times in a stationary Poisson process and are exponentially distributed

with mean 1. This fact is used in the model the other way around--we

generate a series of exponentially distributed random variables with mean I

corresponding to the interarrival times of a stationary process and use

Initial Standard Trial Standard Tril Trial Standard

run-in run-in run-in run-in 4
End of

4 Beginning of o
simultionsimulationsimulation

Time intervals within a trial:

V Periodi I Period 2 1 Period 3 y Period 4

A A A A A

Sample Sample Sample Sample Sample

time 1 time 2 time 3 time 4 time 5

S. Sample I
I- interval -I

Fig. 1 - Dyna-Sim time intervals

--- ++= = ++ . .. ...:. ., ,. -.. .. . . +L . . L+ _ ., =A ..
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the "functional inverse" of L to determine a sequence of arrival times

for the nonstationary process.

In the model, m(t) is constant over finite intervals, which may be

expressed by writing m(t) = mj for bj 1 < t < b.. Note that L(t) is a

nondecreasing piecewise linear function. Figure 2 portrays the

relationship involved in determining arrival times. The horizontal axis

is time and the vertical axis is L(t). Suppose that an event occurs at

time tn-l, which is ending at period b. The distance labeled Z on the

vertical scale is the exponentially distributed random variable. To

determine t, search for the smallest k such that L(b ) > L(t ) + Z.
nj+k n-l

If k = 0, t will be in the same period as is tn, and t = t +
n n n-i

(Z - L(tn))/m. If k > 0, then t b (for the situation shown in Fig.
n-1 n j+k-l

2, k = 3).

L(tn)

z

~~~~L(tn- 1) "- -

bj.i bi. bj+2 b i+3

tn.1 tn

Fig. 2 - Mean value function used to determine time of next arrival

woo A
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The method we have described is embodied in the routine named

TOFARR (for time of arrival) that is called from the arrival event.

TOFARR samples an exponential random variable and then figures out where

current simulated time (TIME.V) is in relation to the cycle of periods

and run-ins. In terms of the discussion above, TOFARR determines b. and

m.. From there, it searches for the period or run-in in which the next

arrival will occur. Finally, TOFARR computes the value of tn and

returns it to the arrival event routine so that the next event may be

scheduled.

MODELING ARRIVAL PROCESSES WITH VARIANCE-TO-MEAN RATIOS GREATER
THAN 1

For a Poisson arrival process, the distribution of the number of

arrivals in a fixed time interval has a variance equal to the mean.

However, actual arrival processes have variances higher than the mean.

Dyna-Sim allows such processes to be modeled based on the approach

adoptea in METRIC.1

For variance-to-mean ratios greater than 1, Dyna-Sim simulates a

compound Poisson process with a logarithmic compounding distribution as

in METRIC. Suppose that it is desired to have an arrival process with

an overall arrival rate of m jobs per time unit and a variance-to-mean

ratio equal to q. For q = 1, the arrival process is a simple Poisson

process with intensity equal to m. When q > 1, the desired effect is

achieved by simulating a Poisson process with a lower intensity, and

whenever an event occurs in the Poisson process, determine the number of

arriving jobs by sampling from the compounding distribution. One can

see how this scheme increases variance--times between arrival events are

increased, but when arrivals occur, they happen in bunches.

The logarithmic compounding distribution has the probability mass

function

fx I (q-lX i for x- 1,2,...;
1n.q\ q X q>1

1 Craig C. Sherbrooke, A Management Perspective on METRIC--

Multi-Echelon Technique for Recoverable Item Control, The Rand
Corporation, RM-5078/1-AF, January 1968.

4 l-4



Notice that the compounding distribution depends only on q. The adjustment

to the intensity is made by calculating

m = m(_ls

In Dyna-Sim, m is a function of job class and time, but q is

constant'for all classes and all time. Hence, only one value of q is

specified by the user. Even in METRIC only one value is used for all

items (because of data problems, not because of difficulties in

modeling).

Within the Dyna-Sim program, the compounding scheme is invoked only
if the user specifies the variance-to-mean ratio to be greater than I.
If q is less than or equal to 1, the simple Poisson processes described

above are simulated.

JOB SERVICE SELECTION PRIORITY RULES

There are four job selection rules from which a user may choose by

specifying the appropriate number. The selection (or dispatching) rule

in use is applied every time a job is completed if there are jobs

waiting. The rules are:

Rule 1 : First come, first served, with no priorities given

to any job class.

Rule 2 : Select a job from the class with the most waiting

jobs. First come, first serve breaks any ties within the

selected class.

Rule 3 : Nonpreemptive priorities--job classes are assigned

priorities and selection is made from the highest priority

class with waiting jobs. Several job classes may be

assigned to a single priority class.

Rule 4: Select a job from the class with the highest backorder

quantity. Backorders are in-service (repair) jobs plus

jobs in queue minus stock level for a job class, which may

be negative. First come, first serve is used as a tie-

breaker.
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Rule 4 is suggested by the ATE equipment problem described in Sec.

I where a lack of serviceable items may cause grounded aircraft or other

important, inoperable end items. In this case it makes sense to attempt

to minimize the number of end items out of commission by choosing jobs

according to the backorder status. It is assumed that the repair/supply

facility starts life with an initial stock level S(i), S(i) 0, for

each item type i (or job class i). If N(t,i) is the number of items in

job class i in repair plus the number in the queue at time t, then

N(t,i) - S(i), the backorder quantity for item type i, is a measure of

the number of end items that are out of commission for lack of item type

i. If reparable units can be cannibalized then all of the holes left by

missing parts can be consolidated in a minimum number of end items.

This minimum number of end items out of commission will be given by the

maximum of N(t,i) - S(i) over all item types.

RANDOM NUMBER STREAMS

Each job class requires a pair of random number seeds specified as

input by the user. One of the seeds initiates a random number stream

that is translated to successive exponential interarrival times. The

other seed generates a random number stream that is translated to

successive exponential service times (if stochastic, nonconstant service

times are in use).

Specifying separate streams of random numbers for the arrival and

service process allows the analyst to use a variance reduction technique

known as "seed switching." By making runs in pairs, and reversing the

order of the paired seeds (for three job classes replace the random

number seeds a, b, c, d, e, f by b, a, d, c, f, e) the outcomes of the

second run will be negatively correlated with the outcomes of the first

run. For example, if in the first run the particular choice of seeds

happened to produce statistically long interarrival times and short

service times (with the result that queue sizes are small) reversing

pairs of seeds will give a run with statistically short interarrival

times and long service times (with the result that queue sizes are

large). The average of the two runs will have less variance than a

single run whose length is equivalent to the total length of the two

runs.
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Seed switching is not important if the only comparisons to be made

are among runs of the model. If, however, one desires to compare

results from the simulation with data from other sources or a different

model, then seed switching is a valuable tactic. (The program displayed

in Appendix B does not automatically do seed swapping; that is left to

the user to do manually by making two separate runs.)

!:

1/t

.5J
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III. RESULTS OF SOME APPLICATIONS OF DYNA-SIM

As we began using Dyna-Sim several results became apparent. As

expected, the infinite (or ample) server assumption is a very bad

approximation to a saturated queuing problem. Several other results,

although not counterintuitive with hindsight, were unexpected.

One of our concerns with the constrained queuing problem was the

possible sensitivity of the results to the choice of a repair time

distribution having a given mean. In particular, when striving for

analytic results it is helpful to assume that service times are

exponential. With this assumption a queuing system satisfies the

requirements of a Markov process, and that gives the analyst a large

arsenal of tools.' Unfortunately, real world repair times are rarely

exponential. Moreover, in the infinite server case the choice of a

repair time distribution having a given mean may greatly affect the

distribution of the number of units in repair.2

Fortunately, in this more difficult constrained server problem, the

repair time mean is important, but the choice of the distribution having

this mean does not seem to matter when the queue is saturated. To

illustrate this comparison, we used the Dyna-Sim model and compared the

output of runs where (1) the repair time for LRU(i) was always equal to

T(i) and (2) the repair time for LRU(i) was an exponential random

variable with mean T(i). These two distributions have been picked

because they are commonly used and very different.

The scenario for this comparison uses arrival rates and repair

times that could be representative of a deployed wing of tactical

fighters with two complete and operational suites of test equipment (the

two servers). The scenario generates time-varying demands on repair

that could be expected in a wartime environment. We modeled five

different LRUs that get tested on one stand of the ATE suite. The

1 Unpublished Rand research by Gordon B. Crawford.

2 G. B. Crawford, Palm's Theorem for Honstationary Processes, The

Rand Corporation, R-2750-RC, October 1981.

&AM-
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maximum backorder quantities computed were maximum over these five LRUs.

Rule 4, the maximum BOQ, was used to determine service priorities.

In this scenario flying increases to a rate about three or four

times higher than normal peacetime flying on day 5 and then drops to a

rate of about twice the peacetime rate on day 12. The queuing system

becomes saturated because the arrival rate exceeds the service rate

beginning on day 5 and then throughout the remainder of the scenario.

The results, rounded to two decimal places, are given in Table i.

In three cases the constant service times yielded a slightly increased

performance. In three other cases the constant service times did worse.

In the remaining cases the results were the same to two decimal places.

These results suggest that for a fixed mean repair time the performance

of the queuing system is fairly insensitive to the the choice of repair

time distribution.

Table I

EXPONENTIAL VS. CONSTANT REPAIR TIMES

Probability of Max BOQ Not Exceeding N

Day 10 Day 15 Day 20

N exp con exp con exp con

6 .97 .98 .78 .87 .53 .53
4 .86 .88 .55 .62 .31 .24
2 .60 .63 .25 .23 .09 .04

NOTE: exp = exponential, con = constant repair times

The other surprising result found with Rule 4 was the strong

dependence between the number of backorders for different LRUs. The

number of inoperable end items at time t is given by the maximum over i

of BOQ(i) = N(i,t) - S(i). In most models where it is desired to

compute

Prjmax BOQ(i) : n] = Pr[BOQ(i) S n for all i] (1)

.M 4 €--
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it is assumed that the items are independent and

Pr[BOQ(i) S n for all i] = r Pr[BOQ(i) S n]. (2)

The latter terms are then individually computed based on the

assumption that N(i,t) are Poisson random variables with known mean

M(i,t).

The assumption that N(i,t) is Poisson does not seem to be a large

source of error, but the assumption that the number of part i in the

queue is independent of the number of part j in the queue may introduce

large errors. The difference between the left and right sides of Eq.(2)

is illustrated in Table 2.

Table 2

OBSERVED PROBABILITIES VS.
COMPUTATIONS BASED ON INDEPENDENCE

Probability of Max BOQ Not Exceeding N

Day 10 Day 15 Day 20

N obs ind obs ind obs ind

6 .97 .97 .78 .58 .53 .14
4 .86 .82 .55 .21 .31 .02
2 .60 .43 .25 .02 .09 .00

NOTE: obs = observed Dyna-Sim probabilities,
ind = probabilities calculated on the assumption
that N(i,t) is independent of N(j,t).

The terms in the column headed "obs" are taken directly from the

Dyna-Sim output for the scenario described above. The terms in the

column headed "ind" have been computed on the assumption that N(i,t) has

a Poisson distribution with the same mean used in the Dyna-Sim run, and

that the number of part i in the system is independent of the number of

part j. As the queue becomes saturated and the backorder quantities

begin to get large, the difference between the observed distribution of

max BOQ and the distribution under the independence assumption becomes
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quite striking. In this case the independence assumption is very

conservative because it overpredicts the number of inoperable end items.

A solution to this problem will be the subject of further research.

*11
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Appendix A

INPUTS AND OUTPUTS OF THE DYNA-SIM MODEL

The Dyna-Sim computer program was developed to facilitate the

analysis of various service priority rules in a multi-server, multi-

job-class queuing system with time-varying arrival rates of jobs. The

data and input requirements of the four service rules that we have

implemented here, and the relative ease with which other rules could be

introduced by other analysts, led us to categorize all model inputs into

one of seven "input sets." Below we discuss the requirements of each of

these input sets and indicate their applicability or inapplicability to

each of the four rules. Then we present an example of the input

requirements for each of the four rules. The appendix concludes with a

description of the various model outputs, with examples.

DYNA-SIM MODEL INPUTS

The Dyna-Sim model, depending on the service priority rule

selected, will require fully specified input data from at least five of

seven possible "input sets," as we have designated our input data

groups. The table below provides an overview of the content of each

input set and which priority rules require data in that set.

Input Service Rule

Set Description 1 2 3 4

1 System and simulation defining parameters yes yes yes yes
2 Service time parameters yes yes yes yes
3 Times for changing arrival rates in trial yes yes yes yes
4 Arrival rates for each class, period yes yes yes yes
5 Random number seeds yes yes yes yes
6 Priority level of each job class no no yes no
7 Inventory stock levels for each job class no no no yes

All time-related inputs used by Dyna-Sim should be specified

consistently. In the example runs below, we describe cases with time

units measured in days; however the user may work with any time units he

wishes.

. P~ o .A..
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Input Format Requirements

Instead of using the usual fixed-format or free-form input

capabilities of Simscript II, the input routine (named INITIALIZE)

expects each input value to be preceded by a single "equals" sign ()

and followed by optional blank spaces. When searching the input data

for a particular input value, the model ignores any text and numbers

before the next equals sign. This allows the user to insert textual

comments (excluding equals signs, of course) throughout the input, even

if two or more input values appear on an input line.' In our use of the

model, we simply identified input values by placing the Simscript

variable name in front of each input, making it easier for us to change

and identify inputs between simulation runs. Several examples of

complete sets of inputs are shown below.
This way of formatting the model inputs should not be confused with

some computer languages' free-form data input techniques where the

program variables are identified, followed by values, in any order.

Dyna-Sim still requires that a specific order within each input set be

followed, as discussed below. In addition, the input routine performs

no input checking.

System and Simulation Defining Parameters (Input Set 1)

Below are definitions of all of the system and simulation defining

variables:

'See input examples later in the appendix.
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Input
Variable Description

NTRIALS Number of trials during entire simulation run
SVCDIST Distribution of service times

(1 = exponential, 2 = constant)
RULE Service priority selection rule

(I = first come, first-serve, 2 = class with most jobs,
3 = differing priorities between job classes,
4 = job class with maximum number of backorders)

TINIT Length of initial run-in
TRUNIN Length of standard run-ins for each sample units
SAMPINT Length of sample interval; controls sampling of units

number in system statistics units
VARTOM Variance-to-mean ratio of arrival process

( 1.0 for ordinary Poisson arrivals
> 1.0 for compound Poisson arrivals)

NCLASSES Number of job classes
NSERVERS Number of servers
NPERIODS Number of periods with differing job arrival rates plus

a
one

aNPERIODS is one greater than the number of periods with differing arrival
rates to allow for the final run-in period described in Sec. II.

This input set is required for all four service rules. An example

of these inputs for a five job class, two server simulation using

service priority rule 1 is displayed in Fig. A.l. The number of periods

specified (NPERIODS) includes the run-in interval. In the example,

NPERIODS = 4 means that the trial is divided into three periods with an

extra period for run-in.

Service Time Parameters (Input Set 2)

There are two available service time distributions currently built

into Dyna-Sim, exponential and constant. The choice, as specified by

the SVCDIST variable of input set 1, applies to all job classes. The

user must specify one mean service time (in whatever time units are

applicable) for each job class in this input set; the input variable (an

array) is MEANST. If the service distribution is exponential, these

input values represent the mean service time for each job class. If

service times are constant, these inputs represent the constant service

times. Either way, the means or constants can vary by job class.

POSO
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Times for Changing Arrival Rates in Trials (Input Set 3)

As discussed in Section II, each trial in a simulation run can have

time-varying job arrival rates. The NPERIODS variable of input set 1

defines the number of periods within a trial in which arrival rates may

vary, plus one. Here, the user needs to indicate the times relative to

the beginning of a trial that these arrival rates can change. The first

input time should be zero (the first period starts at the beginning of a

trial) and is assigned to variable A (an array). Succeeding inputs mark

the times at which arrival rates can change. The last of these inputs

should equal the length of a trial.

Arrival Rates for Each Job Class and Period (Input Set 4)
The model requires a job arrival rate for each each combination of

job class and period. Because all job arrival times are determined with i
the negative exponential distribution, all of these rates must be

greater than zero. The last arrival rate ior each job class (M(1,4),

M(2,4), etc. in Fig. A.1) is the arrival rate used for run-in intervals.

Use a very small, positive fraction for the arrival rate if arrivals are

to be precluded during a certain period; generally do this to the last

period arrival rate in each job class because this rate will be used for

the next run-in period. The program expects to find the rates in the

order shown in Fig. A.l--by period within class.

Random Number Seeds (Input Set 5)
As described in Section II, the model deliberately uses different

random number streams for arrivals and servicing within a job class.

Consequently, for each job class, two random number seeds (integer

valued) should be specified for input variable SEED.V (a Simscript

array). The program expects to find two random number seeds even when

constant service times are specified.

L:I-U .I i_ I A..
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Priority Level of Each Job Class (Input Set 6)

This input set should be provided only if rule 3 (nonpreemptive job

class priority levels) is specified in input set I. The model allows

more job classes than priority levels (when some job classes are at the

same priority level), but the number of priority levels should never

exceed the number of job classes.

As is the usual convention, priorities are related to class

indices, with the lower number of the index having a higher priority

level. The first input required to implement rule 3 is the number of

priority levels (input variable NPRLEVELS). Then for each priority

level, provide the highest index number of the job classes sharing that

priority level (input variable FINPRLV, an array).

As an example, Fig. A.2 expands on our earlier example inputs by

adding input set 6 where we desire to have job classes 1 and 2 at the

highest priority, classes 3 and 4 at a lower priority, and finally class

5 at the lowest priority level.

Inventory Stock Levels for Each Job Class (Input Set 7)

This input set is needed only if rule 4 (priorities to jobs from

job classes with the maximum backorder quantity) is specified in input

set 1. The only input values needed are the initial inventory stock

levels of items corresponding to each job class. These inputs are

directed to input variable STOCK.LEVEL (an array), with one value for

each job class. Figure A.3 shows how our earlier model input example

might be modified to accommodate rule 4.

DYNA-SIM MODEL OUTPUTS

The first output report from Dyna-Sim is a replay of all model

inputs. Using the input data from Fig. A.1, the model produces the

output report shown in Fig. A.4. Although it doesn't contain much more'

information than the original input sets, it should be checked for each

run to ensure that the model has read all input data properly. With the

free-form input format and varying amount of data depending on system

and simulation parameters, mistakes are possible. (For example, don't

change the number of job classes from 4 to 3 and try to run without
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dropping a mean service time, a pair of random number seeds, a job class

from a priority level, and a stock level.) This report is generated as

the inputs are obtained by the INITIALIZE routine.

If the variance-to-mean ratio (input set 1, VARTOM) of the arrival

process is greater than 1.0, adjustments to the input arrival rates by

job class and period are made as discussed in Sec. II. Had VARTOM been

10.0 instead of 1.0, the following display of the adjusted arrival rates

would have been added to Fig. A.4:

ADJUSTED ARRIVAL RATES FOR UNDERLYING POISSON PROCESS
PROCESS BY JOB CLASS AND PERIOD

Period

Class 1 2 3 4

1 .00 .78 .69 .00
2 .00 .54 .48 .00
3 .00 .45 .39 .00
4 .00 .30 .27 .00
5 .00 .05 .04 .00

The first summary output after all trials in the simulation have

been completed is shown in Fig. A.5. This summarizes the relative

frequency distributions of numbers of jobs in the system at the

beginning and at each succeeding sample point across all trials. There

is one set of distributions for each job class, followed by one for all

classes combined. This and succeeding summary reports are generated by

the ENDSIM routine.

Figure A.5 shows this summary report only for job class 3 using the

inputs described in Fig. A.1 (service rule 1). For each sample point in

a job class, the distributions are arranged vertically; labels giving

the number of the sample point and the time within trials are shown

below, along with the averages, maxima, and standard deviations. The

distributions are truncated at 100 jobs, necessitating the reporting of

the maximum. (The distribution in Fig. A.5 goes up to 20 because there

were never more than 20 jobs in the system at any sample point.) This

report provides sufficient information to easily establish the mode and

median at a sample point using the frequency distribution. For example,

at sample point 4, which shows an average of 6.54 jobs, the median is

about 5.64 jobs and the mode is 5 jobs.
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The next set of summaries report flow time statistics (time in

system from job arrival to job completion. To do this, jobs are grouped

by class and by the interval within a trial during which they arrive.

There are also entries for jobs that arrived during run-in periods;

these correspond to the last period shown in the display (period 4).

The time in system statistics displayed for each period include the

average, standard deviation, and number of jobs observed. Only 60 jobs

arrived during run-in periods and no jobs arrived during first intervals

of trials.

There are two separate displays of the type described above. The

first displays flow time statistics for individual jobs that are

measures of system performance. Figigure A.6 exemplifies this report for

the rule 1 simulation discussed above. The second, flow time statistics

for group means, is computed by taking the average flow time for each job

class within each trial as the unit of observation instead of individual

jobs. These averages can be assumed to be independent, so the standard

deviations of the averages can be taken as the standard error of the

flow time estimates. (An estimate of the standard error based on

individual job flow times would give an underestimate because of the

correlation in flow times for jobs that are in the system at the same

time.) Figure A.7 is an example of this report for the same simulation

run.

Unless rule 4 was specified, the output reporting ends here. For

rule 4, which gives priority to jobs of the class currently experiencing

the highest level of backorders, additional outputs related to

backorders are provided. Figure A.8 shows the distribution, average, and

standard deviation of the maximum over all classes of backorders at each

of the sampling points. Figure A.9 shows, at each sampling point, the

frequencies with which each class had the most backorders. For example,

at sample point 3, job class 1 never had the maximum number of

backorders; class 2 had the maximum 72 percent of the time. For

purposes of invoking the maximum backorder rule, backorders were allowed

to be negative. In reporting results, however, cases where stock is

greater or equal to the number of jobs in the system are regarded as

zero backorders.
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INPUT SET 1 -- SYSTEM AND SIMULATION DEFINING PARAMETERS

NCLASSES = 5
NSERVERS =2
NPERIODS = 4
NTRIALS = 100
SVCDIST = 1
RULE =1

TINIT =0.0

TRUNIN = 1000.0
SAMPINT = 5.0
VARTOM = 1.0

* INPUT SET 2 -- SERVICE TIME PARAMETERS

MEANST(l) = 0.187 MEANST(2) = 0.471 MEANST(3) =0.601

MEANST(4) = 0.384 MEANST(5) = 0.240

INPUT SET 3 - TIMES FOR CHANGING ARRIVAL RATES IN TRIAL

A(l)=0.0 A(2)=5.0 A(3)=12.0 A(4)=20.0

INPUT SET 4 -- ARRIVAL RATES FOR EACH JOB CLASS, PERIOD

M(1 ,1)=0.0001 M0l,2)=3.06 M(1 ,3)=2.69 M(1 ,4)=0.0001
M(2,1)=0.0001 M(2,2)=2. 11 M(2,3)=1.86 M(2,4)=0.0001
M(3,1)=0.0001 M(3,2)=1 .74 M(3,3)=1 .53 M(3,4)=0.0001
M(4,1)=0.0001 M(4,2)=1.18 M(4,3)=1.04 M(4,4)=0.0001
M(5,1)=0.0001 M(5,2)=.184 M(5,3)=.162 M(5,4)=0.0001

*** INPUT SET 5 - - RANDOM NUMBER SEEDS *

SEED.V)=4307 SEED.VC2)=9327
SEED.V3)=3923 SEED.V(4)=3894
SEED.VC5)=8484 SEED.VC6)=1847
SEED.VC7)=3848 SEED.V(8)=8443
SEED.VC9)=2065 SEED.V(10)=7674

Fig. A.1--Example of inputs for rule 1 servicing priority
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IPTSET 1I SYSTEM AND SIMULATION DEFINING PARAMETERS

NCLASSES =5
NSERVERS = 2
NPERIODS = 4
NTRIALS = 100
SVCDIST =1
RULE =3

TINIT 0.0
TRUNIN = 1000.0
SAMPINT =5.0
VARTOM =1.0

INPUT SET 2 -- SERVICE TIME PARAMETERS

MEANST(l) =0.187 MEANST(2) =0.471 MEANST(3) =0.601

MEANST(4) =0.384 MEANST(5) =0.240

**INPUT SET 3 -- TIMES FOR CHANGING ARRIVAL RATES IN TRIAL -'

A(1)=0.O A(2)=S.O A(3)=12.0 A(4)=20.0

INPUT SET 4 -- ARRIVAL RATES FOR EACH JOB CLASS, PERIOD *

M(1,1)=0.0001 M(1,2)=3.06 M(1,3)=2.69 M(1 ,4)=0.0001
M(2,1)=0.0001 M(2,2)=2.11 M(2,3)=1.86 M(2,4)=0.0001
M(3,1)=0.0001 M(3,2)=1. 74 M(3,3)=1.53 M(3,4)=0.0001
M(4, 1)=0.0001 M(4,2)=1. 18 M(4,3)=1.04 M(4,4)=0.0001
M(5,1)=0.0001 M(5,2)=.184 M(5,3)=.162 M(5,4)=0.0001

INPUT SET 5 - - RANDOM NUMBER SEEDS ~*

SEED.V(1)=4307 SEED.V(2)=9327
SEED.VC3)=3923 SEED.V(4)=3894
SEED.V(S)=8484 SEED.V(6)=1847
SEED.V(7)=3848 -SEED.V(8)=8443
SEED.V(9)=206S SEED.V(1O)=7674

* INPUT SET 6 - - PRIORITY LEVEL OF EACH JOB CLASS**

NPRLEVELS =3
FINPRLV(1) =2 FINPRLVC2) = 4 FINPRLV(3)=5

Fig. A.2--Example of inputs for rule 3 servicing priority
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* INPUT SET 1 -- SYSTEM AND SIMULATION DEFINING PARAMETERS

NCLASSES = 5
NSERVERS = 2
NPERIODS = 4
NTRIALS = 100
SVCDIST = 1
RULE =4
TINIT = 0.0
TRUNIN = 1000.0
SAHPINT =5.0
VARTOM = 1.0

INPUT SET 2 -- SERVICE TIME PARAMETERS

MIEANST(1) = 0.187 MEANST(2) =0.471 MEANST(3) 0.601
MEANST(4) = 0.384 M'EANST(5) = 0.240

INPUT SET 3 -- TIMES FOR CHANGING ARRIVAL RATES IN TRIAL

A(1)=0.0 A(2)=5.0 A(3)=12.0 A(4)=20.0

INPUT SET 4 -- ARRIVAL RATES FOR EACH JOB CLASS, PERIOD

M0i, )=0.0001 M(1,2)=3.06 M(1,3)=2.69 M(1,4)=0.0001
M(2,1)=0.0001 M(2,2)=2. 11 M(2,3)=1.86 M(2,4)=0.0001
M(3,1)=0.0001 M(3,2)=1. 74 M(3,3)=1.53 M(3,4)=0.0001
M(4,1)=0.0001 M(4,2)=1. 18 M(4,3)=1.04 M(4,4)=0.0001
M(5,1)=0.0001 M(5,2)=.184 M(5,3)=.162 M(5,4)=0.0001

*** INPUT SET 5 - - RANDOM NUMBER SEEDS**

SEED.V(1)=4307 SEED.V(2)=9327
SEED.V(3)=3923 SEED.V(4)=3894
SEED.V(5)=8484 SEED.V(6)=1847
SEED.V(7)=3848 SEED.VCB)=8443

* INPUT SET 7 -- INVENTORY STOCK LEVELS FOR EACH JOB CLASS ~

STOCK. LEVEL( 1)=2
STOCK. LEVEL(2)=4
STOCK.LEVELC3)=4
STOCK.LEVEL(4)=4
STOCK. LEVELCS)=1

Fig. A.3--Example of inputs for rule 4 servicing priority
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DYNASIM INPUT DATA

SYSTEM AND SIMULATION DEFINING PARAMETERS --

NUMBER OF CLASSES 5
NUMBER OF SERVERS 2
NUMBER OF PERIODS 4
NUMBER OF TRIALS 100
DISTR OF SERVICE TIMES 1
SERVICE RULE 1 l=FCFS, 2=CLASS WITH MOST IN QUEUE

3=CLASS PRIORITIES
4=CLASS WITH MAX BACKORDERS

LENGTH INITIAL RUNIN 0.
LENGTH STANDARD RUNIN 1000.00
LENGTH SAMPLE INTERVAL 5.00

VARIANCE-TO-MEAN RATIO 1.00

SERVICE PROCESSING TIME PARAMETERS --

JOB CLASS: 1 2 3 4 5
PARAMETER: .187 .471 .601 .384 .240

TIMES FOR CHANGING ARRIVAL RATES WITHIN A TRIAL --
PERIOD: 1 2 3 4
TIME: 0. 5.00 12.00 20.00

ARRIVAL RATES BY JOB CLASS AND PERIOD --
CLASS PERIOD

1 2 3 4
1 .00 3.06 2.69 .00
2 .00 2.11 1.86 .00
3 .00 1.74 1.53 .00
4 .00 1.18 1.04 .00
5 .00 .18 .16 .00

RANDOM NUMBER SEEDS --
CLASS ARRIVAL PROCESSING

1 4307 9327
2 3923 3894
3 8484 1847
4 3848 8443
5 2065 7674

Fig. A.4--Dyna-Sim output: Replay of inputs for rule 1
servicing priority example
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RELATIVE FREQUENCIES FOR NUMBER OF CLASS 3 JOBS IN SYSTEM
AT EACH SAMPLE POINT COMPUTED ACROSS ALL TRIALS

NO. IN SAMPLE POINT
SYSTEM 1 2 3 4 5

20 0. 0. 0. 0. .0100
19 0. 0. 0. 0. 0.
18 0. 0. 0. .0100 .0300
17 0. 0. 0. 0. 0.
16 0. 0. 0. .0100 .0300
15 0. 0. 0. 0. .0400
14 0. 0. 0. 0. 0.
13 0. 0. 0. .0200 .0400
12 0. 0. 0. .0300 .0500
11 0. 0. .0100 .0400 .0500
10 0. 0. .0200 .0800 .1000
9 0. 0. .0500 .0700 .1000
8 0. 0. .0500 .1000 .0700
7 0. 0. .0800 .1000 .1600
6 0. 0. .0500 .1100 .1400
5 0. 0. .1100 .1800 .0500
4 0. 0. .1700 .0800 .0500
3 0. 0. .1600 .0500 .0500
2 0. 0. .1000 .0700 0.
1 0. 0. .1100 .0400 .0300
0 1.0000 1.0000 .0900 .0100 0.

SAMPLE POINT 1 2 3 4 5
TIME IN TRIAL 0. 5.00 10.00 15.00 20.00

AVERAGE 0. 0. 4.04 6.54 8.54
MAXIMUM 0 0 11 18 20
STD DEV 0. 0. 2.70 3.32 3.93

Fig. A.5--Dyna-Sim summary output: Relative frequency
distributions for number of jobs in system
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FLOW TIME STATISTICS FOR INDIVIDUAL JOBS

JOB CLASS 1

PERIOD 1 2 3 4
AVERAGE 0. 2.359 5.956 .081
STD DEV 0. 1.929 2.720 .052
NUMBER 0 2153 2134 11

JOB CLASS 2
PERIOD 1 2 3 4
AVERAGE .188 2.735 6.125 .706
STD DEV 0. 2.041 2.657 .533
NUMBER 1 1443 1451 14

JOB CLASS 3
PERIOD 1 2 3 4
AVERAGE 0. 2.801 6.220 .620
STD DEV 0. 2.020 2.725 .428
NUMBER 0 1247 1253 9

JOB CLASS 4
PERIOD 1 2 3 4
AVERAGE 0. 2.665 6.045 .452
STD DEV 0. 1.936 2.555 .493
NUMBER 0 851 806 9

JOB CLASS 5
PERIOD 1 2 3 4
AVERAGE 0. 2.743 5.817 .293
STD DEV 0. 2.225 2.564 .396
NUMBER 0 139 124 17

Fig. A.6--Dyna-Sim summary output: Flow time
statistics for individual jobs

I
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FLOW TIME STATISTICS FOR GROUP MEANS

JOB CLASS 1
PERIOD 1 2 3 4
AVERAGE 0. 2.311 5.815 .085
STD ERROR* .118 .238 .015
NUMBER 0 100 100 9

JOB CLASS 2
PERIOD 1 2 3 4
AVERAGE .188 2.561 6.062 .622
STD ERROR* 0. .125 .234 .127
NUMBER 1 100 100 13

JOB CLASS 3
PERIOD 1 2 3 4
AVERAGE 0. 2.664 6.145 .553

STD ERROR* .129 .236 .144
NUMBER 0 100 100 8

JOB CLASS 4
PERIOD 1 2 3 4
AVERAGE 0. 2.555 5.891 .308
STD ERROR* .122 .234 .104
NUMBER 0 100 100 8

JOB CLASS 5
PERIOD 1 2 3 4
AVERAGE 0. 2.646 5.860 .203
STD ERROR* .212 .279 .042
NUMBER 0 80 78 16

STD ERROR = STD DEV / SQRT(NUMBER)
USE AS ESTIMATE OF STD DEV OF FLOW TIME SAMPLE MEANS

Fig. A.7--Dyna-Sim summary output: Flow time
statistics for group means
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RELATIVE FREQUENCIES FOR MAXIMUM BACKORDER QUANTITY ACROSS ALL JOB
CLASSES IN SYSTEM AT EACH SAMPLE POINT COMPUTED OVER ALL TRIALS

MAXIMUM SAMPLE POINT
BOQ 1 2 3 4 5

20 0. 0. 0. 0. .0100
19 0. 0. 0. 0. 0.
18 0. 0. 0. 0. 0.
17 0. 0. 0. 0. 0.
16 0. 0. 0. 0. 0.
15 0. 0. 0. 0. .0200
14 0. 0. 0. 0. .0100
13 0. 0. 0. .0100 0.
12 0. 0. 0. 0. .0100

11 0. 0. 0. 0. .0200
10 0. 0. 0. .0200 .0700
9 0. 0. 0. .0200 .1000
8 0. 0. 0. .0700 .0700
7 0. 0. .0100 .0500 .0700

6 0. 0. .0300 .0700 .1400
5 0. 0. .0400 .0900 .1400
4 0. 0. .0600 .1400 .1400
3 0. 0. .0800 .1800 .0700
2 0. 0. .1900 .0900 .0900
1 0. 0. .1400 .1100 .0400
0 1.0000 1.0000 .4500 .1500 .0300

SAMPLE POINT 1 2 3 4 5
TIME IN TRIAL 0. 5.00 10.00 15.00 20.00

AVERAGE -1.00 -1.00 1.26 3.64 5.99
MAXIMUM -1 -1 7 13 20
STD DEV 0. 0. 1.94 2.85 3.54

Fig. A.8--Dyna-Sim summary output: Rule 4 maximum backorder
quantity relative frequency distributions
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RELATIVE FREQUENCIES FOR JOB CLASS WITH MAXIMUM
BACKORDER QUANTITY COMPUTED OVER ALL TRIALS

MAXIMUM SAMPLE POINT
BOQ CLASS 1 2 3 4 5

5 0. 0. .0100 .0100 .0100

4 0. 0. .0500 .0500 .0200
3 0. 0. .2200 .1400 .1500
2 0. 0. .7200 .8000 .8200
1 0. 0. 0. 0. 0.

SAMPLE POINT 1 2 3 4 5
TIME IN TRIAL 0. 5.00 10.00 15.00 20.00

Fig. A.9--Dyna-Sim summary output: Rule 4 maximum backorder
quantity job class relative frequency distributions

*1
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Appendix B

DYNA-SIM SIMSCRIPT II COMPUTER PROGRAM

This appendix presents some additional information about Dyna-Sim

model, including the topics of programming language, variables, files,

subprograms, event control, and guidelines for service selection rule

addition. Then the complete Simscript source language program for the

model is listed.

PROGRAMMING LANGUAGE

The entire Dyna-Sim model is written in the Simscript II language.'

The specific implementation of the Simscript II language is named

Sim'script 11.5 and is available from CACI, Inc. 2 The program source code

listed at the end of the appendix was developed under the IBM MVS

operating system, and any job control language statements shown there

apply to that system.

VARIABLES

All system variables have explanatory comments appended to their

definition in the PREAMBLE. Unless defined otherwise in the preamble or

within a routine, all variables take the integer mode. Local variables

of particular importance have explanatory comments in the routine where

used.

SIMSCRIPT Ii SUBPROGRAMS

All of the various subprograms used in the Dyna-Sim model are

listed below with a one or two line statement of their purpose.

Subprograms are of three types in Simscript II--routines, functions, and

events--a distinction preserved in this list.

1 P.J. Kiviat et al., SIMSCRIPT II Programming Language, Prentice

Hall, Englewood Cliffs, N.J., 1968.
1 CACI, SImSCRIPT 11.5 Reference Handbook, Consolidated Analysis

Centers Inc., Los Angeles, 1976.
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Routines

MAIN Entry point to the model; schedules first arrival in
each job class and starts the simulation

INITIALIZE Obtains all inputs and prepares input summary report

STARTSERVICE Schedules an end of service EPROC event for a job

SELECT Decides which job in the queue is to be served next,
depending on service rule

TOFARR Determines next time of arrival for a particular job
class

ENDSIM After the simulation terminates, this routine prepares
statistical summary reports

TRACE Used for debugging; tracks event timing

DUMPQUE Used for debugging; prints contents of queue

GETINT "Free-form" integer numeric input routine

GETREAL "Free-form" real numeric input routine

FIND.EQUAL Finds "=" sign for "free-form" input routines

LOAD.BUFFER Obtains next input line for "free-form" inputs

Functions

PTSAMP Samples processing times for jobs whenever a job
arrives (never when a job goes into service)

SETPRIORITY Sets priority of jobs for various rules

Events

ARRIVAL Disposes of arriving jobs, placing them either in
queue or service, and schedules next arrival

EPROC Disposes of completed jobs and their servers; does
some data collection

RUNIN Schedules a STARTDATA event and the next RUNIN event

STARTDATA Performs some initial data collection for a trial,
then schedules the first sample of a trial

SAMPLE Examines number in queue for each job class and
backorder quantity for each job class for data
collection, then schedules next sample in a trial
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EVENT CONTROL

The main routine (MAIN) schedules the first RUN-IN event to happen

after the initial run-in period. RUNIN schedules itself to be executed

again after the next trial is over. It also schedules a STARTDATA event

to happen when the run-in is complete. STARTDATA, which happens at the

beginning of every trial, counts trials and is responsible for calling

ENDSIM and stopping the simulation. STARTDATA also causes a SAMPLE

event to occur immediately to sample number in system and backorder

quantity statistics. SAMPLE then reschedules itself at the next sample

point in the trial, if there is one.

GUIDELINES FOR ADDING NEW JOB PRIORITY RULES

If the user desires to add his own job priority rules, the

following guidelines are presented. Waiting jobs are kept on a list

(SIMSCRIPT set) ranked by an attribute of jobs called PRIORITY. All

action is confined to two routines: SETPRIORITY and SELECT. When a job

arrives, SETPRIORITY (a function) is invoked. Its purpose is to

calculate the job's PRIORITY, which establishes how jobs in the queue

are ordered. For rules 1 and 2, PRIORITY is the arrival time of the

job. For rule 3, a table lookup based on the job class finds the

corresponding priority level. The actual priority number is 100,000

times the priority level, plus the sequence number of the job divided by

100. This is to insure that FCFS will be the tie breaker when there are

ties.

Routine SELECT performs the rest of the action. Whenever a server

becomes free and there are jobs in the queue, SELECT is called by EPROC

to find out which job should be worked on next. For rules 1 and 3, all

SELECT has to do is report back the first job in the set. For rule 2,

there is a global array called NUMQUE that tells how many jobs of each

class are in the queue. The class of job to be selected is found by

searching NUMQUE to find the element with the largest value, and then

searching the queue to find the first job with the corresponding class.

Rule 4 is handled similarly to rule 2, except that maximum backorder

quantity is used in place of number in the queue, as described in Sec.

Ii. II
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I/ JOB ...

// EXEC SI125,PARM.SIM='M370,SEQ',REGION.GO=350K
//SIM.SYSIN DD

PREAMBLE
NORMALLY MODE IS INTEGER
TEMPORARY ENTITIES

EVERY JOB HAS
AN ARRTIME, ''ARRIVAL TIME
A TYPE, ''CLASS OF JOB
A PROCTIME, ''PROCESSING TIME
A PRIORITY, ''TO BE USED IN IMPLEMENTING VARIOUS RULES
AN ARRPRD ''ARRIVAL PERIOD AS DEFINED BY THE A ARRAY

''RELATED TO CHANGES IN ARRIVAL RATE,
''USED TO GROUP JOBS FOR FLOW TIME STATISTICS

AND BELONGS TO THE QUEUE

DEFINE ARRTIME, PROCTIME, PRIORITY AS DOUBLE VARIABLES

THE SYSTEM OWNS A QUEUE
DEFINE QUEUE AS A SET RANKED BY LOW PRIORITY

WITHOUT FL, FB, FA ROUTINES

PERMANENT ENTITIES
EVERY SERVER HAS A BUSYIND

''THE FOLLOWING COMPOUND ENTITIES ARE FOR DATA COLLECTION BECAUSE
'' THE TALLY STATEMENT ONLY WORKS ON ATTRIBUTES, NOT VARIABLES

EVERY CLASSDUM AND PERIODDUM HAS A FLOW AND AN AFLOW
EVERY CLASSDUM AND SAMPDUM HAS A NINSDC
DEFINE FLOW AND AFLOW AS DOUBLE VARIABLES

EVERY SAMPDUM HAS
A MAXBQ, '' MAX BACK ORDER QUANTITY

A TRMAXBQ, '' MAX OF MAXBQ AND 0 FOR DATA COLLECTION
A CLMXBQ '' MAX BOQ JOB CLASS

EVENT NOTICES
INCLUDE

RUNIN, ''TO RUN SYSTEM BETWEEN TRIALS & AFTER INIT RUNIN
STARTDATA ''BEGINNING OF A TRIAL

EVERY
SAMPLE HAS ''TO TAKE DATA ON NUMBER IN SYSTEM

A POINT ''TO GROUP DATA BY SAMPLE POINT
EVERY

ARRIVAL HAS
A CLASS, ''CLASS OF JOB ARRIVING
A PERIOD ''TO MARK JOBS WITH GROUPING FOR FLOW TIME STATS

''SEE ARRPRD IN JOB ENTITY
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EVERY
EPROC HAS ''END OF PROCESSING

A ESERVER, ''SERVER INVOLVED

A EJOB ''ID OF JOB INVOLVED

PRIORITY ORDER IS RUNIN, STARTDATA, SAMPLE, ARRIVAL, EPROC

DEFINE IDLE TO MEAN 0
DEFINE BUSY TO MEAN 1
DEFINE EXP TO MEAN 1
DEFINE CONST TO MEAN 2

DEFINE SETPRIORITY, PTSAMP AS DOUBLE FUNCTIONS
DEFINE NUMPARTS AS AN INTEGER FUNCTION

DEFINE
TINIT, ''LENGTH OF INITIAL RUNIN
TRUNIN, ''LENGTH OF RUNIN AFTER INITIAL AND BETWEEN TRIALS
TSTRUNIN, ''TIME STARTED LAST RUNIN
TSTTRIAL, ''TIME LAST STARTED TRIAL WAS STARTED
SAMPINT, ''LENGTH OF A SAMPLING INTERVAL FOR NUMBER IN SYS STATS
VARTOM, ''VARIANCE TO MEAN RATIO (SHERBROOKE'S Q)
LNQ, ''LN(VARTOM)
LOGPARM ''PARAMETER (P/Q SHERBROOKE) FOR LOGARITHMIC DISTRIBUTION

AS DOUBLE VARIABLES

DEFINE MEANST AS A 1-DIM DOUBLE VARIABLE ''SVCE DISTN PARAMETERS

DEFINE
NPERIODS, ''NUMBER OF DIFFERENT ARRIVAL RATES, SEE A AND M
NCLASSES, ''NUMBER OF JOB CLASSES
NSERVERS, ''NUMBER OF SERVERS (REDUNDANT WITH N.SERVERS)
NTRIALS, ''NUMBER OF TRIALS TO MAKE
SVCDIST, ''DISTRIBUTION OF SERVICE TIMES, 1 EXP, 2 = CONST
RULE, ''TO SELECT PRIORITY. 1 = FCFS, 2 FIRST FROM CLASS

' WITH MOST IN QUEUE. ADD OTHERS LATER
SPNTS, 'NUMBER OF SAMPLE POINTS IN A TRIAL
STATUS, ''0 = IN INITIAL RUNIN, 1 = IN A STANDARD RUNIN,

''2 = IN A TRIAL
TRIALS, ''NUMBER OF TRIALS SO FAR (COMPARE WITH NTRIALS)
NARVLS, ''NUMBER OF ARRIVALS SO FAR (FOR PRIORITY IN H-O-L)
NPRLEVELS''NUMBER OF PRIORITY LEVELS FOR HEAD-OF-THE-LINE

AS INTEGER VARIABLES

DEFINE
M ''VECTORS OF ARRIVAL RATES, LAST FOR RUNIN

'' SAME NUMBER OF RATES FOR ALL CLASSES
AS A 2-DIM REAL VARIABLE

DEFINE
A ''TIMES REL TO START OF A TRIAL FOR CHANGING ARRIVAL

'' RATES. A(l) = 0.0, A(NPERIODS) = LENGTH OF A TRIAL
AS A 1-DIM DOUBLE VARIABLE
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DEFINE
NUMQUE, ''NUMBER BY JOB CLASS OF JOBS IN QUEUE. FOR RULE 2
NINS, ''NUMBER IN SYSTEM BY JOB CLASS USED FOR DATA COLLECTION
FINPRLV, ''FIRST JOB CLASS IN PRIORITY LEVEL
STOCK.LEVEL '' STOCK LEVEL FOR EACH JOB CLASS (RULE 4)

AS 1-DIM INTEGER VARIABLES

DEFINE
BUFF.COLUMN ''INPUT BUFFER COLUMN USED FOR INPUT SCANNING
AS AN INTEGER VARIABLE

''DATA COLLECTION FOR FLOW TIMES

TALLY V
AVGFLOW AS THE GROUP AVERAGE,''WITHIN TRIAL FLOW TIME AVERAGES
NAVGF AS THE GROUP NUMBER,
MFLOW AS THE AVERAGE,
VFLOW AS THE STD.DEV,
NFLOW AS THE NUMBER
OF FLOW

''THE IDEA IS TO TALLY FLOW WITHIN A TRIAL. AT THE END OF A TRIAL,
''ASSIGN FLOW TO AFLOW AND RESET GROUP TOTALS OF FLOW. THEN WE GET
''AN ESTIMATE OF THE STANDARD DEVIATION OF THE SAMPLE AVERAGES BY
''TREATING THE AVERAGE WITHIN A TRIAL AS AN INDEPENDENT OBSERVATION.
'' FOR ESTIMATING FLOW TIMES, JOBS ARE GROUPED BY 'PERIODS'

''WHICH ARE TIMES OVER WHICH CONSTANT ARRIVAL RATES HOLD.
''SEE THE VARIABLES A, M, AND NPERIODS.

TALLY
GRPFLOW AS THE MEAN,

VGRPFLOW AS THE STD.DEV,
NGRPFLOW AS THE NUMBER

OF AFLOW

''DATA COLLECTION FOR NUMBER IN SYSTEM
'' NINSDC IS THE NUMBER IN SYSTEM BY CLASS AND SAMPLE POINT

TALLY
HISTINSYS(O TO 101 BY 1) AS THE HISTOGRAM,
MAXINSYS AS THE MAXIMUM,
AVGINSYS AS THE AVERAGE,
SDINSYS AS THE STD.DEV,
NUMINSYS AS THE NUMBER

OF NINSDC

''DATA COLLECTION FOR MAX BACKORDER QUANTITY
'' MAXBQ IS THE MAX BACKORDER QUANTITY BY SAMPLE POINT
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TALLY
HISTMAXBQ(O TO 101 BY 1) AS THE HISTOGRAM,
MAXXBQ AS THE MAXIMUM,
AVGMAXBQ AS THE AVERAGE,
SDMAXBQ AS THE STD.DEV,
NUMMAXBQ AS THE NUMBER

OF TRMAXBQ

''DATA COLLECTION FOR MAX BACKORDER QUANTITY JOBCLASS
'' CLMXBQ IS THE MAX BACKORDER QUANTITY JOBCLASS BY SAMPLE POINT

TALLY
HISTCLMXBQ(0 TO 101 BY 1) AS THE HISTOGRAM

OF CLMXBQ

END ''OF PREAMBLE

MAIN
CALL INITIALIZE
''THE FOLLOWING ST. CAUSES TRACE TO BE CALLED FROM TIMING ROUTINE
''DEBUG LET BETWEEN.V = 'TRACE'
FOR I = 1 TO NCLASSES

SCHEDULE AN ARRIVAL GIVEN I, NPERIODS NOW
LET STATUS = 0
SCHEDULE A RUNIN AT TINIT
START SIMULATION

END '' OF MAIN

ROUTINE INITIALIZE
DEFINE XIN AS A REAL VARIABLE
LET BUFF.COLUMN=-1 ''INITIALIZE FOR FIRST RECORD
USE UNIT 03 FOR INPUT
WRITE AS B 20, "DYNASIM INPUT DATA",! ,/

INPUT SET 1
CALL GETINT YIELDING NCLASSES
CALL GETINT YIELDING NSERVERS
CALL GETINT YIELDING NPERIODS
CALL GETINT YIELDING NTRIALS
CALL GETINT YIELDING SVCDIST
CALL GETINT YIELDING RULE
CALL GETREAL YIELDING TINIT
CALL GETREAL YIELDING TRUNIN
CALL GETREAL YIELDING SAMPINT
CALL GETREAL YIELDING VARTOM

[
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PRINT 15 LINES WITH NCLASSES, NSERVERS, NPERIODS, NTRIALS, SVCDIST,
RULE, TINIT, TRUNIN, SAMPINT, VARTOM THUS

SYSTEM AND SIMULATION DEFINING PARAMETERS --

NUMBER OF CLASSES
NUMBER OF SERVERS
NUMBER OF PERIODS
NUMBER OF TRIALS
DISTR OF SERVICE TIMES
SERVICE RULE 1=FCFS, 2=CLASS WITH MOST IN QUEUE

3=CLASS PRIORITIES
4=CLASS WITH MAX BACKORDERS

LENGTH INITIAL RUNIN
LENGTH STANDARD RUNIN
LENGTH SAMPLE INTERVAL

VARIANCE-TO-MEAN RATIO

RESERVE
NUMQUE(*), MEANST(*) AS NCLASSES,
A(*) AS NPERIODS,
M(*,*) AS NCLASSES BY NPERIODS

.INPUT SET 2

FOR I = 1 TO NCLASSES, DO
CALL GETREAL YIELDING XIN
LET MEANST(I)=XIN

LOOP
SKIP 2 LINES
WRITE AS "SERVICE PROCESSING TIME PARAMETERS -

WRITE 1 AS /, " JOB CLASS:", I 7
FOR I = 2 TO NCLASSES WRITE I AS I 10
WRITE AS /, " PARAMETER:"
FOR I 1 TO NCLASSES WRITE MEANST(I) AS D(10,3)

INPUT SET 3
FOR I = 1 TO NPERIODS, DO

CALL GETREAL YIELDING XIN
LET A(I)=XIN

LOOP
SKIP 3 OUTPUT LINES
WRITE AS "TIMES FOR CHANGING ARRIVAL RATES WITHIN A TRIAL -- "

WRITE 1 AS /, " PERIOD:", I 8
FOR J = 2 TO NPERIODS WRITE J AS I 10
WRITE AS /, " TIME: "
FOR J = 1 TO NPERIODS WRITE A(J) AS D(10,2)
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. .. INPUT SET 4

SKIP 3 LINES
WRITE AS "ARRIVAL RATES BY JOB CLASS AND PERIOD -- "

/, " CLASS PERIOD"
WRITE 1 AS /, I 13
FOR I = 2 TO NPERIODS WRITE I AS I 10
WRITE AS /
FOR J = I TO NCLASSES DO

WRITE J AS 1 5
FOR K = 1 TO NPERIODS DO

CALL GETREAL YIELDING XIN
LET M(J,K)=XIN

WRITE M(J,K) AS D(10,2) V

LOOP
SKIP 1 LINE

LOOP

IF VARTOM GT 1.0, CALL ARRPARMS '' TO ADJUST M
ALWAYS

INPUT SET 5
''READ RN SEEDS: for ARRIVAL AND PROCT FOR EACH CLASS
RELEASE SEED.V
RESERVE SEED.V(*) AS 2 * NCLASSES
SKIP 1 LINE
WRITE AS /, "RANDOM NUMBER SEEDS -- "

/," CLASS ARRIVAL PROCESSING", /
FOR J = 1 TO NCLASSES DO
CALL GETREAL YIELDING XIN LET SEED.V(J)=XIN
CALL GETREAL YIELDING XIN LET SEED.V(J+NCLASSES)=XIN
WRITE J, SEED.V(J), SEED.V(J+NCLASSES) AS 1 5, 1 12, 1 12, /

LOOP

' **~***** * INPUT SET 6 (RULE 3 ONLY)
'' IF HEAD OF LINE, READ NUMBER OF PRIORITY LEVELS AND FIRST
'' JOB CLASS FOR EACH PRIORITY CLASS
IF RULE EQ 3
CALL GETINT YIELDING NPRLEVELS
RESERVE FINPRLV(*) AS NPRLEVELS
FOR I = 1 TO NPRLEVELS, DO

CALL GETREAL YIELDING XIN
LET FINPRLV(I)=XIN

LOOP
WRITE AS /,/,"PRIORITY LEVELS --

WRITE NPRLEVELS AS /, "NUMBER OF PRIORITY LEVELS =", I 4,/
WRITE AS /, " PRIORITY LEVEL INDEX: "
FOR I = 1 TO NPRLEVELS WRITE I AS 1 6
WRITE AS /, " FIRST JOB CLASS IN PRIORITY LEVEL:"
FOR I = 1 TO NPRLEVELS WRITE FINPRLV(I) AS I 6
WRITE AS /
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ALWAYS
**********- INPUT SET 7 (RULE 4 ONLY)

IF RULE EQ 4
RESERVE STOCK.LEVEL(*) AS NCLASSES
WRITE AS /,/, "STOCK LEVELS FOR EACH JOB CLASS -- "

WRITE AS /, " CLASS LEVEL", /
FOR J=l TO NCLASSES DO
CALL GETREAL YIELDING XIN LET STOCK.LEVEL(J)=XIN
WRITE J, STOCK.LEVEL(J) AS /,1 S, I 10

LOOP

ALWAYS
CREATE EACH SERVER(NSERVERS)
RESERVE NINS AS NCLASSES + I
LET SPNTS = 1 + TRUNC.F(A(NPERIODS) / SAMPINT)
CREATE EACH CLASSDUM(NCLASSES + 1)
CREATE EACH PERIODDUM(NPERIODS)
CREATE EACH SAMPDUM(SPNTS)
LET TRIALS = 0
START NEW PAGE
RETURN

END ''OF INITIALIZATION

ROUTINE ARRPARMS
DEFINE QM1 AND LFACTOR AS DOUBLE VARIABLES

LET QM1 = VARTOM-1.0
LET LNQ = LOG.E.F(VARTOM)
LET LFACTOR=LNQ/QM1
LET LOGPARM = QM1/VARTOM

FOR I=l TO NCLASSES
FOR J=l TO NPERIODS, DO
LET M(I,J) = M(I,J)*LFACTOR

LOOP

SKIP 3 LINES
WRITE AS "ADJUSTED ARRIVAL RATES FOR UNDERLYING",

" POISSON PROCESS BY JOB CLASS AND PERIOD -- ",

/, CLASS PERIOD"
WRITE 1 AS /, I 13
FOR I = 2 TO NPERIODS WRITE I AS I 10
WRITE AS /
FOR J = 1 TO NCLASSES DO

WRITE J AS I 5
FOR K = 1 TO NPERIODS DO
WRITE M(J,K) AS D(10,2)
LOOP
SKIP 1 LINE

LOOP
END "OF ARRPARMS
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EVENT ARRIVAL(KIND, PERIOD) SAVING THE EVENT NOTICE

DEFINE TOA AS A DOUBLE VARIABLE

LET JOBSHERE = 1
IF VARTOM GT 1.0, LET JOBSHERE = NUMPARTS(KIND)
ALWAYS

FOR PART=I TO JOBSHERE, DO

LET NARVLS = NARVLS + 1
CREATE JOB

LET ARRTIME(JOB) = TIME.V
LET TYPE(JOB) = KIND
LET PROCTIME (JOB) = PTSAMP(KIND)
LET ARRPRD(JOB) = PERIOD

LET PRIORITY(JOB) = SETPRIORITY(JOB)
LET NINS(KIND) = NINS(KIND) + 1
LET NINS(NCLASSES+l) = NINS(NCLASSES+l) + 1 *

''SEE IF THERE IS A FREE SERVER FOR THE NEW JOB

LET GO = 0
FOR EACH SERVER CALLED I, WITH BUSYIND(I) = IDLE,

FIND THE FIRST CASE
IF FOUND LET GO = 1
ALWAYS

IF GO = 1 CALL STARTSERVICE GIVEN I, JOB
ALWAYS
IF GO = 0

FILE JOB IN QUEUE
LET NUMQUE(KIND) = NUMQUE(KIND) + 1

ALWAYS

''DEBUG THE FOLLOWING IS FOR DEBUGGING
''DEBUG PRINT 1 LINE THUS
''DEBUG JOB ARRTIME TYPE PROCTIME ARRPRD GO M.QUEUE NINS(TYPE)

''DEBUG PRINT 1 LINE WITH JOB, ARRTIME(JOB), TYPE(JOB), PROCTIME(JOB),
''DEBUG ARRPRD(JOB), GO, M.QUEUE(JOB), NINS(KIND) LIKE THIS

''DEBUG * *** .****** * * * ***

LOOP

''SCHEDULE THE NEXT ARRIVAL

CALL TOFARR GIVEN KIND YIELDING TOA, JPERIOD

''DEBUG WRITE TIME.V, TOA AS "TIME.V=",D(14,8),S 4,"TOA=",D(14,8),/
SCHEDULE THE ARRIVAL GIVEN KIND, JPERIOD AT TOA

RETURN
END "OF ARRIVAL
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FUNCTION NUMPARTS GIVEN JCLASS

DEFINE BY, SUM, TEST AS DOUBLE VARIABLES

LET COUNT = 1
LET BY = LOGPARM
LET SUM = BY
LET TEST = LNQ * RANDOM.F(JCLASS)
WHILE SUM LT TEST DO

LET COUNT = COUNT + 1
LET BY = BY * LOGPARM
LET SUM = SUM + BY / COUNT

LOOP
RETURN WITH COUNT

END

EVENT EPROC GIVEN ISERVER, JOBID

''DO ACCOUNTING FOR DATA COLLECTION

LET K = TYPE(JOBID)
LET FLOW(K, ARRPRD(JOBID)) = TIME.V - ARRTIME(JOBID)
LET NTNS(K) = NINS(K) - 1
LET NINS(NCLASSES+I) = NINS(NCLASSES+I) - 1

''DEBUG WRITE JOBID, K, ARRPRD(JOBID), TIME.V - ARRTIME(JOBID)
''DEBUG AS /, "EPROC JOBID=", I 8, S 4,"CLASS=", I 4,
''DEBUG S 4, "ARRPRD=",I 4, S 4, "FLOW=", D(14,8), /,/

''DISPOSE OF JOB, SERVER

LET BUSYIND(ISERVER) = IDLE
DESTROY JOB CALLED JOBID
IF QUEUE IS NOT EMPTY
CALL SELECT YIELDING JOBID

REMOVE JOBID FROM QUEUE
LET NUMQUE(TYPE(JOBID)) = NUMQUE(TYPE(JOBID)) - 1
CALL STARTSERVICE GIVEN ISERVER, JOBID

ALWAYS
RETURN

END ''OF EPROC

EVENT RUNIN SAVING THE EVENT NOTICE
LET TSTRUNIN = TIME.V
LET STATUS = 1
SCHEDULE A STARTDATA IN TRUNIN DAYS
SCHEDULE THIS RUNIN IN TRUNIN + A(NPERIODS) DAYS
RETURN

END "OF RUNIN
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EVENT STARTDATA
LET STATUS = 2
LET TSITRIAL = TIME.V

'' DATA COLLECTION FOR FLOW TIMES

IF TRIALS GT 0
FOR K = 1 TO NCLASSES

FOR L = 1 TO NPERIODS DO
IF NAVGF(K,L) GT 0

''DEBUG WRITE TIME.V, K, L, AVGFLOW(K,L), NAVGF(K,L) AS
''DEBUG "TIME.V=",D(1O,4), S 4, "K,L=", I 3, I 3, S 4,
''DEBUG "AVGFLOW=", D(10,4), S 4, "NAVGF=", I 4 ,/

LET AFLOW(K,L) = AVGFLOW(K,L)
ALWAYS

LOOP
ALWAYS
FOR EACH CLASSDUM FOR EACH PERIODDUM

RESET GROUP TOTALS OF FLOW

''COUNT TRIALS AND TEST FOR END OF SIMULATION

LET TRIALS = TRIALS + 1
IF TRIALS GT NTRIALS
CALL ENDSIM
STOP

''NOT DONE, CONTINUE MORE TRIALS

ELSE
SCHEDULE A SAMPLE GIVEN 0 NOW
RETURN

END ''OF STARTDATA

EVENT SAMPLE GIVEN POINT SAVING THE EVENT NOTICE
LET POINT = POINT + 1
FOR K = 1 TO NCLASSES + 1 LET NINSDC(K,POINT) = NINS(K)

LET TEMP.MAXBQ=-999999 LET TEMP. CLMXBQ=0
FOR K=I TO NCLASSES DO
LET DIFF=NINS(K)-STOCK.LEVEL(K)
IF DIFF GT TEMP.MAXBQ
LET TEMP.MAXBQ=DIFF LET TEMP.CLMXBQ=K

ALWAYS
LOOP
LET MAXBQ(POINT)=TEMP.MAXBQ
LET TRMAXBQ(POINT) = MAX.F(O, TEMP.MAXBQ)
LET CLMXBQ(POINT)=TEMP.CLMXBQ
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''DEBUG WRITE TIME.V,POINT,MAXBQ(POINT),CLIXBQ(POINT)
''DEBUG AS /,"SAMPLE AT ",D(10,3),3 I 5

''DEBUG WRITE POINT AS "NINSDC POINT=", I 4, /
''DEBUG FOR K = 1 TO NCLASSES WRITE NINSDC(K,POINT) AS I 8
''DEBUG WRITE AS /,/

IF POINT LT SPNTS
SCHEDULE THIS SAMPLE GIVEN POINT IN SAMPINT DAYS
RETURN

ELSE DESTROY SAMPLE
RETURN

END '' OF SAMPLE

ROUTINE STARTSERVICE GIVEN ISERVER, JOBID
LET BUSYIND(ISERVER) = BUSY
SCHEDULE AN EPROC GIVEN ISERVER, JOBID IN PROCTIME(JOBID) DAYS
RETURN

END ''OF STARTSERVICE

FUNCTION PTSAMP GIVEN KIND ''FOR SAMPLING SERVICE TIMES
IF SVCDIST EQ EXP
RETURN WITH EXPONENTIAL.FlEANST(KIND), KIND + NCLASSES)

ELSE
RETURN WITH MEANST(KIND)

END ''OF PTSAMP

FUNCTION SETPRIORITY(JOBID) ''SETS PRIORITY OF JOBS FOR VARIOUS RULES
IF RULE EQ 1 OR RULE EQ 2 ''FCFS OR FIRST JOB FROM CLASS

OR RULE EQ 4

'' WITH MAX NO. WAITING
RETURN WITH ARRTIME(JOBID)

ELSE

IF RULE EQ 3
LET JCLASS = TYPE(JOBID)
LET I = 1
WHILE JCLASS GT FINPRLV(I) UNTIL I = NPRLEVELS

LET I = I + 1
RETURN WITH REAL.F(100000 * I) + REAL.F(NARVLS)/100.O

ELSE
RETURN WITH 0.0

END '' OF SETPRIORITY

.. ... .. .. A A-!A
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ROUTINE SELECT YIELDING JOBID

''DEBUG WRITE TIME.V AS /,"ENTER SELECT ROUTINE AT TIME.V=",D(10,3),/
''DEBUG CALL DUMPQUE
''DEBUG IF TIME.V GT 100.0 STOP
''DEBUG ELSE
IF RULE EQ 1 ''FCFS
OR RULE EQ 3 ''HEAD OF THE LINE
LET JOBID = F.QUEUE
RETURN

ELSE
IF RULE = 2 ''EARLIEST ARRIVING JOB FROM CLASS WITH MOST WAITING
FOR I = 1 TO NCLASSES COMPUTE LONGEST = MAXIMUM(I) OF NUMQUE(I)
FOR EACH JOBID OF QUEUE WITH TYPE(JOBID) = LONGEST

FIND THE FIRST CASE
RETURN

ELSE
IF RULE 4 ''EARLIEST ARRIVING JOB FROM CLASS WITH HIGHEST

'' BACKORDER LEVEL (NO. WAITING JOBS - STOCK LEVEL)

''DEBUG WRITE AS /,"SELECT RULE 4"
''DEBUG WRITE AS /,"NUMQUE(*)"
''DEBUG FOR KK=I TO NCLASSES WRITE NUMQUE(KK) AS 1 5
FOR I 1 TO NCLASSES DO
IF NUMQUE(I) GT 0
COMPUTE MAXBO = MAXIMUM(I) OF NUMQUE(I)-STOCK.LEVEL(I)

''DEBUG WRITE I,NUMQUE(I)-STOCK.LEVEL(I),MAXBO AS /,"FIND MAXBO",3 I 5
ALWAYS
LOOP

''DEBUG WRITE MAXBO AS /,"MAXBO=",I 5
FOR EACH JOBID OF QUEUE WITH TYPE(JOBID) = MAXBO

FIND THE FIRST CASE
ALWAYS
''DEBUG WRITE JOBID AS /,"JOBID=",I 15
RETURN

END ''OF SELECT

ROUTINE TOFARR ''TIME OF ARRIVAL'' GIVEN KIND YIELDING TOA, JPERIOD
'' FOR SAMPLING ARRIVAL TIMES

DEFINE TOA, B, Z, T AS DOUBLE VARIABLES

LET Z = EXPONENTIAL.F(1.0,KIND)

''DEBUG WRITE TIME.V AS /,"TIME.V= ",D(14,8),/
"DEBUG WRITE STATUS, Z AS "IN TOFARR WITH STATUS=", I 2, S 4,
''DEBUG "Z=', D(14,8), /

-4
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IF STATUS EQ 0 ''IN THE INITIAL RUNIN
LET TOA = TIME.V + Z / M(KIND, NPERIODS)
LET JPERIOD = NPERIODS
IF TOA LT TINIT
RETURN

ELSE
LET Z =Z - (TINIT - TIME.V) M(KIND, NPERIODS)
LET T = TINIT
LET B = T + TRUNIN

ALWAYS 
J

IF STATUS EQ I ''IN A STANDARD RUNIN
LET B = TSTRUNIN + TRUNIN
LET JPERIOD = NPERIODS
LET T = TIME.V i

"'DEBUG WRITE JPERIOD, B AS "STATUS IS 1, JPERIOD=", I 3, S 4,
''DEBUG "B=", D(14,8),/

ALWAYS
IF STATUS EQ 2 ''IN A TRIAL, HAVE TO LOCATE JPERIOD

LET JPERIOD = 1
LET T = TSTTRIAL
WHILE TIME.V GT T + A(JPERIOD + 1) DO

LET JPERLOD = JPERIQD + I
IF JPERIOD GT NPERIODS

LET T = T + A(NPERIODS)
LET JPERIOD = 1

ALWAYS
LOOP
LET B T + A(JPERIOD + 1)

LET T =TIME.V

''DEBUG WRITE JPERIOD, B, T AS "LEAVING STATUS=2 PART",
''DEBUG "f JPERIOD=", I 3, S 4, "B=", D(14,8), "T=", D(14,8),/

ALWAYS4

'WE NOW HAVE B = TIME OF START OF THE FIRST PERIOD BEYOND
'TIME.V AND JPERIOD = INDEX OF THE PERIOD CONTAINING TIME.V

''DEBUG WRITE JPERIOD, B, T, Z AS "BEFORE UNTIL JPERIOD=", I 3,
''DEBUG S 4, "B=", D(14,8), S 4, "T=', D(14,8), S 4, "Z=",
''DEBUG D(14,8), It
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UNTIL Z LT (B - T) * M(KIND, JPERIOD) DO
LET Z = Z - (B - T) * M(KIND, JPERIOD)
LET T = B
LET JPERIOD = JPERIQD + 1
IF JPERIOD LT NPERIODS

LET B =B + A(JPERIQD + 1) - A(JPERIOD)
ALWAYS
IF JPERIOD EQ NPERIODS

LET B = B + TRUNIN
ALWAYS
IF JPERIOD GT NPERIODS
LET B =B + A(2)
LET JPERIOD = 1

ALWAYS
''DEBUG WRITE Z AS "IN UNTIL Z REDUCED TO", D(14,8),/

LOOP

LET TOA =T + Z / M(KIND, JPERIOD)

''DEBUG WRITE T, Z, TOA, JPERIOD AS "LEAVING TOFARR WITH T=",
''DEBUG D(14,8), S 4, "%="% D(14.,8), S 4, "TOA=", D(14,8),
''DEBUG S 4, "JPERIOD=", I 3, /

RETURN
END ''OF TOFARR

ROUTINE ENDSIN
DEFINE STDERR AS A REAL VARIABLE

WRITE TIME.V AS *,"ENDRUN SIMULATION ENDED AT TIME", D(18,6), I
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FOR K = 1 TO NCLASSES + 1 DO
SKIP 5 OUTPUT LINES
IF K LE NCLASSES
WRITE K AS "RELATIVE FREQUENCIES FOR NUMBER OF CLASS",

1 3, " JOBS IN SYSTEM", /, I
" AT EACH SAMPLE POINT COMPUTED ACROSS ALL TRIALS", /,/

ALWAYS
IF K GT NCLASSES
WRITE AS "RELATIVE FREQUENCIES FOR OVERALL NUMBER OF JOBS",

" IN SYSTEM",/,
" AT EACH SAMPLE POINT COMPUTED ACROSS ALL TRIALS", /,/

ALWAYS
WRITE AS " NO. IN SAMPLE POINT", /,

SYSTEM", B 14
FOR L = 1 TO SPNTS WRITE L AS 1 8
WRITE AS /,/
LET J = 101 LET N = 0
WHILE N EQ 0, UNTIL J EQ 1, DO

LET J = J - 1
FOR L = 1 TO SPNTS LET N = N + HISTINSYS(K,L,J+I)
''DEBUG IF K EQ 4
''DEBUG WRITE J, N AS "J=", I 5, " N=", I 5, / ALWAYS

LOOP
FOR JJ BACK FROM J TO 0 DO
WRITE JJ AS 1 9 WRITE AS B 18
FOR L = 1 TO SPNTS
WRITE REAL.F(HISTINSYS(K, L, JJ+1)) /
REAL.F(NUMINSYS(K,L)) AS D(8,4)

WRITE AS/
LOOP

WRITE AS " ......... "
FOR L = 1 TO SPNTS + 1 WRITE AS ""
WRITE AS /, I, "SAMPLE POINT", B 14
FOR L = 1 TO SPNTS WRITE L AS 1 8 WRITE AS!, "TIME IN TRIAL"
WRITE 0.0 AS D(10,2)
FOR L = I TO SPNTS - 1 WRITE L * SAMPINT AS D(8,2) WRITE AS /, /
WRITE AS "AVERAGE Is

FOR L = 1 TO SPNTS WRITE AVGINSYS(K, L) AS D(8,2)
WRITE AS /, "MAXIMUM it

FOR L = 1 TO SPNTS WRITE MAXINSYS(K,L) AS I 8
WRITE AS /, "STD DEV "

FOR L = 1 TO SPNTS WRITE SDINSYS(K,L) AS D(8,2)

WRITE AS /, /, /
LOOP "END OF NUMBER IN SYSTEM DATA
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IF RULE=4
START NEW PAGE
WRITE AS "RELATIVE FREQUENCIES FOR MAXIMUM BACKORDER QUANTITY",

" ACROSS ALL JOB", /,
" CLASSES IN SYSTEM AT EACH SAMPLE POINT COMPUTED OVER",
ALL TRIALS", /,/

WRITE AS " MAXIMUM SAMPLE POINT", /,
of BOQ ", B 14

FOR L = 1 TO SPNTS WRITE L AS 1 8
WRITE AS 1,1
LET J = 101 LET N = 0
WHILE N EQ 0, UNTIL J EQ 1, DO

LET J = J - 1
FOR L = 1 TO SPNTS LET N = N + HISTMAXBQ(L,J+I)

LOOP
FOR JJ BACK FROM J TO 0 DO

WRITE JJ AS 1 9 WRITE AS B 18
FOR L = 1 TO SPNTS

WRITE REAL.F(HISTMAXBQ(L,JJ+1)) /
REAL.F(NUMMAXBQ(L)) AS D(8,4)

WRITE AS /
LOOP

WRITE AS "----

FOR L = 1 TO SPNTS + 1 WRITE AS ".
WRITE AS /, /, "SAMPLE POINT", B 14
FOR L = 1 TO SPNTS WRITE L AS I 8 WRITE AS /, "TIME IN TRIAL"
WRITE 0.0 AS D(1O,2)
FOR L = I TO SPNTS - 1 WRITE L * SAMPINT AS D(8,2) WRITE AS /, /
WRITE AS "AVERAGE
FOR L = 1 TO SPNTS WRITE AVGMAXBQ(L) AS D(8,2)

WRITE AS /, "MAXIMUM 
"

FOR L = 1 TO SPNTS WRITE MAXXBQ(L) AS I 8
WRITE AS /, "STD DEV "

FOR L = 1 TO SPNTS WRITE SDMAXBQ(L) AS D(8,2) .1i
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SKIP 5 OUTPUT LINES

WRITE AS "RELATIVE FREQUENCIES FOR JOB CLASS WITH MAXImUM", /,
BACKORDER QUANTITY CONIPUTED OVER ALL TRIALS", /,/

WRITE AS " MAXIMUM SAMPLE POINT", /,
BOQ CLASS", B 14

FOR L = 1 TO SPNTS WRITE L AS I 8
WRITE AS /,/
LET J = 101 LET N = 0
WHILE N EQ 0, UNTIL J EQ 1, DO

LET J = J - 1

FOR L = 1 TO SPNTS LET N = N + HISTMAXBQ(L,J+I)
LOOP
FOR JJ BACK FROM NCLASSES TO 1 DO

WRITE JJ AS I 5 WRITE AS B 18
FOR L = 1 TO SPNTS
WRITE REAL.F(IiISTCL'IXBQ(L,JJ)) /
REAL.F(NTRIALS) AS D.8,4)

WRITE AS /
LOOP

WRITE AS "----"
FOR L = 1 TO SPNTS + 1 WRITE AS "-.........

WRITE AS /, /, "SAMPLE POINT", B 14
FOR L = 1 TO SPNTS WRITE L AS 1 8 WRITE AS / "TIME IN TRIAL"
WRITE 0.0 AS D(1O,2)
FOR L = 1 TO SPNTS - 1 WRITE L * SAMPINT AS D(8,2) WRITE AS /, /

ALWAYS
START NEW PAGE
WRITE AS B 5, "FLOW TIME STATISTICS FOR INDIVIDUAL JOBS", /, /
FOR K = 1 TO NCLASSES DO
WRITE K AS S 10, " JOB CLASS", I 3, /
WRITE AS "PERIOD '

FOR L = 1 TO NPERIODS WRITE L AS I 8
WRITE AS /
WRITE AS "AVERAGE
FOR L = 1 TO NPERIODS WRITE MFLOW(K,L) AS D(8,3)
WRITE AS /, "STD DEV "

FOR L = 1 TO NPERIODS WRITE VFLOW(K,L) AS D(8,3)
WRITE AS /, "NUMBER"
FOR L = 1 TO NPERIODS WRITE NFLOW(K,L) AS I 8
WRITE AS /, /

LOOP ''END OF FLOW RESULTS

Ii
I
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START NEW PAGE
WRITE AS / , / ,B 5, "FLOW TIME STATISTICS FOR GROUP MEANS", /, /
FOR K = 1 TO NCLASSES DO
WRITE K AS S 10, " JOB CLASS", I 3, /
WRITE AS "PERIOD "

FOR L = 1 TO NPERIODS WRITE L AS I 8
WRITE AS /
WRITE AS "AVERAGE "

FOR L = 1 TO NPERIODS WRITE GRPFLOW(K,L) AS D(8,3)
WRITE AS /, "STD ERROR*"
FOR L = 1 TO NPERIODS DO

IF NGRPFLOW(K,L) GT 0
LET STDERR = VGRPFLOW(K,L) / SQRT.F(NGRPFLOW(K,L))
WRTTE STDERR AS D(8,3)

ALWAYS
IF NGRPFLOW(K,L) EQ 0 WRITE AS S 8
ALWAYS

LOOP

WRITE AS /, "NUMBER"
FOR L = 1 TO NPERIODS WRITE NGRPFLOW(K,L) AS 1 8
WRITE AS /, /

LOOP ''END OF GROUP FLOW RESULTS
WRITE AS "* STD ERROR = STD DEV / SQRT(NUMBER)", /,

" USE AS ESTIMATE OF STD DEV OF FLOW TIME SAMPLE MEANS" , /

RETURN
END ''OF ENDSIM

ROUTINE TRACE ''FOR DEBUGGING, SEE ASSIGNMENT TO BETWEEN.V IN MAIN
WRITE TIME.V AS /, "TIME.V=", D(12,6), S 4, "DUMPING QUEUE", /
CALL DUMPQUE
SKIP 1 LINE
GO TO 'RUN', 'START', 'SAMP', 'ARR', 'EPR' PER EVENT.V

'RUN' WRITE AS "RUNIN", /
RETURN

'START' WRITE TRIALS AS "STARTDATA TRIALS=", I 4, /
RETURN

'SAMP' WRITE POINT AS "SAMPLE POINT=", I 4, / 4
RETURN

'ARR' WRITE CLASS, PERIOD AS "ARRIVAL CLASS=", 1 4, S 4, "PERIOD=",
1 4,/

RETURN
'EPR' WRITE ESERVER, EJOB AS "EPROC ESERVER=", I 4, S 4, "EJOB=",

I 10, /
RETURN

END '' OF TRACE

..................................
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ROUTINE DUMPQUE
''TAKE OUT THE RETURN BELOW TO GET THIS TO DO ITS THING
'' RETURN
IF QUEUE IS EMPTY WRITE AS "QUEUE IS EMPTY", /
RETURN

OTHERWISE
PRINT 1 LINE LIKE THIS
JOB ARRTIME TYPE PROCTIME PRIORITY ARRPRD
FOR EACH J OF QUEUE
PRINT 1 LINE WITH J, ARRTIME(J), TYPE(J), PROCTIME(J), PRIORITY(J),

ARRPRD(J) LIKE THIS

RETURN
END ''OF DUMPQUE

ROUTINE GETINT YIELDING INTVAR
DEFINE XREAL AS A REAL VARIABLE

CALL FIND.EQUAL
READ AS B BUFF.COLUMN USING THE BUFFER
READ XREAL USING THE BUFFER

''DEBUG WRITE XREAL AS /, "GETINT XREAL=", D(10,5)
LET INTVAR=XREAL

RETURN
END ''GETINT

ROUTINE GETREAL YIELDING XREAL
DEFINE XREAL AS A REAL VARIABLE

CALL FIND.EQUAL
READ AS B BUFF.COLUMN USING THE BUFFER
READ XREAL USING THE BUFFER

''DEBUG WRITE XREAL AS /, "GETREAL XREAL=", D(10,5)
RETURN

END ''GETREAL

ROUTINE FIND.EQUAL
''DEBUG WRITE AS /,"ENTER FIND.EQUAL"
''SCANS INPUT BUFFER FOR A "=", AFTER WHICH AN INPUT VALUE
''SHOULD APPEAR. ASSUMES FIXED INPUT RECORD OF 80 COLUMNS

IF BUFF.COLUMN LT 0 CALL LOAD.BUFFER
ALWAYS

'SCAN' LET CHAR1=""
FOR I=BUFF.COLUMN+1 TO 80, WHILE CHARI NE "=",

READ CHARI AS B I, A 1 USING THE BUFFER
IF I GE 80. CALL LOAD.BUFFER

GO TO 'SCAN'
ALWAYS
LET BUFF.COLUMN=I

''DEBUG WRITE BUFF.COLUMN AS /, "BUFF.COLUMN=", I 5
RETURN

END ''FIND.EQUAL

i
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ROUTINE LOAD. BUFFER
DEFINE CHAR4 AS AN ALPHA VARIABLE

START NEW INPUT LINE
WRITE AS / USING THE BUFFER ''CLEAR BUFFER

''DEBUG WRITE AS /, "LOAD.BUFFER="
FOR I=l TO 20, DO

READ CHAR4 AS A 4
''DEBUG WRITE CHAR4 AS A 4

WRITE CHAR4 AS A 4 USING THE BUFFER
LOOP
LET BUFF. COLUMN=O

RETURN
END ''LOAD.BUFFER

..
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